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A B S T R A C T   

Soil health encompasses a range of biological, chemical, and physical soil properties that sustain the commercial 
and ecological value of agroecosystems. Monitoring soil health requires a comprehensive set of diagnostics that 
can be cost-prohibitive for routine analyses. The soil microbiome provides a rich source of information about soil 
properties, which can be assayed in a high-throughput, cost-effective way. We evaluated the accuracy of random 
forest (RF) and support vector machine (SVM) regression and classification models in predicting 12 measures of 
soil health, tillage status, and soil texture from 16S rRNA gene amplicon data with an operationally relevant 
sample set. We validated the efficacy of the best performing models against independent datasets and also tested 
best practices for processing microbiome data for use in machine learning. Soil health metrics could be predicted 
from microbiome data with the best models achieving a Kappa value of ~0.65, for categorical assessments, and a 
R2 value of ~0.8, for numerical scores. Biological health ratings were better predicted than chemical or physical 
ratings. Validation with independent datasets revealed that models had general predictive value for soil prop-
erties, including yield. The ecological profiles of several taxa important for model accuracy matched the observed 
relationships with soil health, including Pyrinomonadaceae, Nitrososphaeraceae, and Candidatus Udeaobacter. 
Models trained at the highest taxonomic resolution proved most accurate, with losses in accuracy resulting from 
rarefying, sparsity filtering, and aggregating at higher taxonomic ranks. Our study provides the groundwork for 
developing scalable technology to use microbiome-based diagnostics for the assessment of soil health.   

1. Introduction 

Managing soil health is designed to promote environmental sus-
tainability by improving the long-term fertility of cropland, reducing 
agricultural inputs, conserving biodiversity, and mitigating air and 
water pollution (Doran, 2002; Lehmann et al., 2020). Soil health is 
measured using a range of biological, chemical and physical properties 
that correspond with the commercial and ecological value of agro-
ecosystems (Rinot et al., 2019; Stewart et al., 2018). Health status is 
benchmarked with a comprehensive set of metrics and monitored over 
time to assess the impacts of management (Moebius-Clune et al., 2017). 
The need for routine soil health monitoring can be cost-prohibitive for 
many farm managers seeking to improve stewardship practices. Recent 
advances in automation and DNA sequencing technology have dramat-
ically reduced the cost of assaying the composition of microbial com-
munities (the ‘microbiome’), which might serve as an integrated 
measure of soil health. The soil microbiome contains information about 
the biological, chemical and physical status of soil which could be 

leveraged by machine learning (ML) to predict conventional metrics of 
soil health. 

Microbial communities can be sensitive indicators of environmental 
change and dysbiosis, like pollution (Qin et al., 2020; Rocca et al., 2019; 
Werner et al., 2011) and human disease (Liu et al., 2020; Statnikov et al., 
2013; Sze and Schloss, 2018). In agroecosystems, the soil microbiome is 
a rich source of information on soil properties affected by land-use and 
agricultural management practices which has been used to differentiate 
organic and conventional agriculture (Francioli et al., 2016; Hartmann 
et al., 2015; Pershina et al., 2015), nitrogen fertilization regime (Wessén 
et al., 2011; Zhalnina et al., 2013), and tillage practices (Degrune et al., 
2017). Soil microorganisms are also active participants in processes that 
underlie soil health, like soil aggregate formation (Lehmann et al., 
2017), disease and weed suppression (Cha et al., 2016; Liu et al., 2019; 
Mendes et al., 2011; Trognitz et al., 2016), and moisture retention and 
erosion control (Chamizo et al., 2018; Peng and Bruns, 2018; Rodrí-
guez-Caballero et al., 2012; Zheng et al., 2018). However, variation in 
the soil microbiome due to the spatial and temporal effects of climate 
and geology is often far greater than the effects of management practices 
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(Delgado-Baquerizo et al., 2017; Hartmann et al., 2015; Wilhelm et al., 
2017). Thus, the promise of evaluating soil health using microbiome 
data has been constrained by the shear diversity and variation of soil 
microbial communities. This challenge might be overcome with ML 
approaches that are sensitive to underlying community structures that 
reflect soil properties relevant to soil health monitoring. 

Supervised ML can be used to predict system state characteristics 
from microbiome data. For example, microbiome-based ML has been 
successful in predicting human health status (Poore et al., 2020; Top-
çuoğlu et al., 2020) and has shown promise in predicting crop produc-
tivity (Chang et al., 2017), soil carbon flux (Thompson et al., 2019), and 
physicochemical properties (Hermans et al., 2020). The efficacy of 
microbiome-based ML, however, varies by study size, data type, and 
biological system (Knights et al., 2011; Sze et al., 2019), and since soil 
microbiomes are far more diverse and heterogeneous than human 
microbiomes, it remains to be seen whether soil microbiome composi-
tion can inform soil health status. One of the major challenges in 
ML-based modeling of microbiome data is a tendency to overfit, since 
the number of features in the model (taxonomic units or genes) typically 
far exceeds the number of samples. The capacity of ML algorithms to 
capture variation in multi-dimensional community data might also be a 
liability due to inherent compositional biases and challenges in 
normalizing sampling efforts (Chen et al., 2018; McKnight et al., 2019; 
Morton et al., 2019). There are methods to address these challenges, 
such as regularization (Pasolli et al., 2016; Topçuoğlu et al., 2020) or 
aggregating features by broader classes (Statnikov et al., 2013; Zhou and 
Gallins, 2019), but microbiome data does not always have predictive 
value (Sze et al., 2019). The utility and inherent challenges of using 
microbiome-based ML to predict measures of soil health have yet to be 
examined. 

Our study evaluated the use of microbiome-based ML to predict the 
physical, chemical, and biological measures of soil health encompassed 
in the Comprehensive Assessment of Soil Health (CASH) framework 
(Moebius-Clune et al., 2017). CASH is a diagnostic tool based on a suite 
of 12 soil health metrics (‘health metrics’) proven to be sensitive to the 
effects of agricultural practices like tillage intensity (Nunes et al., 2018) 
and organic versus conventional management (van Es and Karlen, 2019) 
and land-use practices across regions of the USA (Fine et al., 2017) and 
the globe (Bhadha et al., 2018; Frost et al., 2019; Gholoubi et al., 2018; 
Rekik et al., 2018; Williams et al., 2020). We collected 16S rRNA gene 
data from farmland soils in a manner consistent with operational soil 
health testing in the USA to evaluate the performance of regression- and 
classification-based predictions of health metrics using random forest 
(RF) and L2 regularized support vector machine (SVM) models. Building 
upon methods described by Topçuoğlu et al. (2020), we used ML to 
evaluate the importance of regularization, normalization, and the 

complexity of feature sets. We then compared the accuracy of pre-
dictions for health metrics and the features (i.e., bacterial taxa) 
contributing most to ML model accuracy, providing a view of the un-
derlying ecological basis of predictions. Finally, we validated the pre-
dictive performance of models against independent microbiome 
datasets, which either used the CASH framework (‘Musgrave farm 
study’), or other related soil properties (‘Pastureland study’) (Lanzén 
et al., 2015). Our study aims to lay the groundwork for developing 
microbiome-based technology to perform soil health diagnostics to 
promote routine monitoring and the adoption of soil health practices. 

2. Methods 

2.1. Soil sampling and health diagnostics 

A total of 949 soil samples were collected from farmlands across the 
USA and Canada as part of a national soil health characterization 
initiative by the U.S. Department of Agriculture Natural Resources 
Conservation Service (Fig. 1A). Soil sampling was performed according 
to the CASH protocol (Moebius-Clune et al., 2017). In brief, a 15 cm soil 
core is taken, homogenized and shipped on ice to the Cornell Soil Health 
Laboratory (Ithaca, NY), where they were air dried and generally 
analyzed within a period of 0.5–2 months. Over short periods, changes 
in microbiome composition due to air drying and storage are minor and 
comparable to the effects of freezing (Clark and Hirsch, 2008; Ivanova 
et al., 2017; Lauber et al., 2010; Tatangelo et al., 2014; Tzeneva et al., 
2009). All samples were subjected to a full characterization of soil health 
(Fig. 1B), which includes measures of biological (organic matter con-
tent, respiration, ‘autoclaved citrate extractable’ (ACE) protein, and 
active carbon [also known as ‘permanganate-oxidizable carbon’]), 
chemical (pH, extractable phosphorus and potassium, and minor ele-
ments), and physical status (aggregate stability, available water capac-
ity, and surface and subsurface hardness) (Schindelbeck et al., 2016). 
The ‘minor elements’ rating is an aggregate score based on magnesium, 
manganese, iron, and zinc concentrations. Each metric is designed to 
resolve a specific dimension of soil health related to management 
practices (see Supplementary Information; SI). Raw data from each 
metric is transformed using a scoring function to create a normalized soil 
health rating (Moebius-Clune et al., 2017). A total soil health rating 
(‘health rating’) is calculated based on the unweighted mean of all 
twelve ratings. Each metric is also assigned to a soil health category 
(‘health category’) upon which management recommendations are 
based. The following categories are assigned based on numerical ratings: 
(0–20]: “very low,” (20–40]: “low,” (40,60]: “medium,” [60,80]: “high,” 
and (80,100]: “very high” (Moebius-Clune et al., 2017). In addition to 
health metrics, ML models were created to classify total DNA yield (as a 
proxy for microbial biomass), the intensity of tilling (“no till”; “shallow 
till” ≤ 6 inch depth, and “deep till” ≥ 6 inch depth), and soil texture 
class, based on ratings of sand, silt and clay (details in SI). 

2.2. DNA extraction and amplicon sequencing 

DNA was extracted from soil using the ‘DNeasy PowerSoil HTP 96 
Kit’, as per the manufacturer’s instructions (QIAGEN, Germantown, MD) 
with a bead beating treatment of 2.5 min at 5.5 m s− 1 (Bio Spec Prod-
ucts, Santa Clara, CA). Soil DNA extracts were quantified using the 
Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo Fisher Scientific, 
Inc., Waltham, MA) and measured with a FilterMax F5 micro-plate 
reader (Molecular Devices, San Jose, CA). Bacterial community 
composition was determined by sequencing the V4 region of the 16S 
rRNA gene amplified from soil DNA extracts by polymerase chain re-
action (PCR) using dual-indexed barcoded 515f/806r primers as 
described by (Kozich et al., 2013). PCR was performed with 2 ng of DNA 
template, in triplicate, according methods described in (Zwetsloot et al., 
2020) and pooled, purified and normalized to a standard concentration 
using the SequalPrep normalization kit (Invitrogen, CA, USA). Amplicon 

Abbreviations 

ACE autoclaved citrate extractable 
ANOVA analysis of variance 
ASV amplicon sequence variant 
CASH Cornell assessment of soil health 
CSS cumulative sum scaling 
K potassium 
ML machine learning 
P extractable phosphorus 
PCR polymerase chain reaction 
PERMANOVA permutational multivariate analysis of variance 
RF random forest 
rRNA ribosomal RNA 
SVM support vector machine 
t-SNE t-distributed stochastic neighbor embedding  
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libraries were multiplexed and sequenced on a total of five lanes of 
Illumina MiSeq (2 × 250 paired-end) with a spike-in of 8% PhiX at the 
Biotechnology Resource Centre (Cornell University, Ithaca, NY, USA). 
The raw sequencing data was archived at the National Centre for 
Biotechnology Information (BioProject accession: PRJEB35975). 

2.3. Bacterial community composition 

A total of 753 samples were successfully sequenced, originating from 
162 unique geographical regions (defined by a 1 km radius) and 191 
unique field sites when subdivided by agricultural management prac-
tices (‘geogroup’). The dataset was subsampled to cap the number of 
samples from a geogroup to 10, reducing the final dataset to 598 samples 
(mean = 3.1 sample per field site, median = 1). The samples that failed 
to sequence either yielded insufficient DNA during extraction or failed 
during PCR amplification and were two times more likely to be assigned 
to the low health category (Fisher’s Exact; p = 0.04). Amplicon libraries 
were processed using QIIME2 (v. 2020.2) (Bolyen et al., 2019), with 
dependencies on DADA2 (Callahan et al., 2016), to assign sequences to 
amplicon sequence variants (ASVs). Taxonomic classification was per-
formed using the QIIME2 ‘q2-feature-classifier’ trained on the Silva 
database (nr_v132) (Quast et al., 2013). All ASVs detected in 
no-template controls were removed from analyses. Normalization was 
performed to standardize the sampling effort (i.e., sequencing depth) 

among samples based on rarefying (sub-sampling to a common 
sequencing depth), proportioning (division by total sequencing depth) 
or cumulative sum scaling (‘CSS’, a form of proportioning based on 
quantiles). Sparsity filtering was performed to remove sparse ASVs, 
occurring at low frequency (fewer than 10 samples), and rare ASVs, 
occurring at low relative abundance (<0.01% of average read depth). 
Five dataset types were generated based on the filtering and read-depth 
normalization method applied: (i) unfiltered (rarefied), (ii) unfiltered 
(proportional), (iii) filtered (rarefied), (iv) filtered (CSS) and (v) filtered 
(proportional). Our sequencing efforts produced an average and mini-
mum sequencing depths of 25,300 and 19,000 quality-processed reads 
per library, respectively. Alpha-diversity metrics (Shannon diversity 
index and Pielou’s evenness) were calculated from filtered rarified li-
braries using the ‘plot_richness’ function from the phyloseq package 
(McMurdie and Holmes, 2013). Weighted Unifrac distances were 
calculated using the ‘UniFrac’ function in phyloseq (Lozupone et al., 
2011) and used to assess beta-diversity using PERMANOVA and 
covariance in community composition and health ratings (using 
Bray-Curtis dissimilarity) with the Mantel test (‘mantel’) from the vegan 
package (Oksanen et al., 2015). The compositional similarity of bacte-
rial communities was visualized using t-distributed stochastic neighbor 
embedding (t-SNE) (van der Maaten and Hinton, 2008) with the Rtsne 
package (Krijthe, 2015). All multiple pairwise comparisons were per-
formed using the Kruskal-Wallis test with the ‘kruskalmc’ function from 

Fig. 1. An overview of the main components of our study. In (A), the geographical location of farmland soils used for soil health and microbiome analyses. In (B), the 
twelve soil health metrics predicted by machine learning models based upon soil bacterial community composition. In (C), a schematic outlining the machine 
learning workflow used to create classification and regression models for soil health metrics using different microbiome feature sets. In brief, data was first split into 
training (80%) and testing sets (20%). Training data then used to select the best parameters through cross validation and regularization. In (D), the tests performed in 
the three parts of our study: (1) identify the optimal processing of microbiome data, (2) identify which soil health metrics can be predicted from the microbiome and 
(3) to validate that the best models contain information that can predict soil health in independent datasets. 
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pgirmess (Giraudoux et al., 2018). 

2.4. Supervised machine learning 

Our ML approach generally followed the ML workflow proposed by 
(Topçuoğlu et al., 2020) to which we added the capacity to perform 
multi-factor classification- and regression-based modeling (Fig. 1C). All 
analyses were performed in R (v. 3.6.0) (Core Team, 2020) using the 
caret package (Kuhn, 2008). Two ML algorithms were used: random 
forest (RF), which routinely performs best on microbiome data 
(Thompson et al., 2019; Zhou and Gallins, 2019), and a L2 regularized 
SVM with a linear kernel (method ‘svmLinear3’ in caret), chosen for 
speed and efficacy (Topçuoğlu et al., 2020). Both algorithms are capable 
of performing classification- and regression-based modeling, which 
were used to predict health category and rating, respectively. Regula-
rization was based on five-fold cross-validation of training data com-
bined with a grid search to select the best hyperparameter settings for 
SVM (cost and loss) and RF (mtry). Predictive performance was evalu-
ated using the kappa statistic (for classification models) and the coeffi-
cient of determination (R2) of the linear regression of observed versus 
predicted data (for regression models). Training and validation were 
performed on an 80:20% split of the sample set which was repeated 50 
and 25 times to account for lucky/unlucky splits for SVM and RF, 
respectively. Fewer splits were run for RF due to the extensive training 
time. Each feature (ASV or taxon) was scaled between 0 and 1 with the 
‘preProcess’ function from caret. Model accuracy was tested using 
samples excluded by the random 20% split. Models were cross-validated 
using microbiome and soil health data from an independent CASH-based 
study of tillage and cover crop use (‘Musgrave Farm study’ data; n = 21) 
and from a study on mountain pastureland management (‘Pastureland 
study’ data; n = 198; BioProject: PRJEB9654) that measured soil 
properties related to the health metrics used in CASH (Lanzén et al., 
2015) (data provided in Table S1). 

The relative importance of features (i.e., taxa or ASVs) in the top 
performing models was determined using a leave-one-out approach, 
where the degree of decrease in prediction accuracy served as a measure 
of importance. The change in accuracy for each individual feature was 
assessed by excluding it from microbiome data input into existing 
models as previously described (Topçuoğlu et al., 2020). Each feature 
was evaluated once per model, and the change in accuracy was averaged 
across models trained on different sample splits (nSVM = 50 and nRF =

25). Features that caused a decrease in ≥0.2% in model accuracy were 
deemed ‘important features.’ Highly correlated features were evaluated 
as a single feature set to reduce computational efforts during importance 
testing. Correlated features were identified using Spearman’s rank cor-
relation with the ‘rcorr’ function from Hmisc (v. 4.2) (Harrell and 
Dupont, 2015) and grouped as a set if ρ ≥ 0.9. All analyses can be 
reproduced using the data and scripts provided in the Supplementary 
Data Package, and ML models can be obtained from the Open Science 
Foundation archive under the DOI: 10.17605/OSF.IO/6FC9B. 

3. Results 

Soil health and microbiome data were collected in a continent-scale 
survey of North American farmland soil to evaluate the predictive ac-
curacy of ML classification and regression models trained on the 
composition of bacterial communities (a 16S rRNA gene survey). The 
Kappa statistic was used to compare classification accuracy because 
samples were not uniformly distributed across health categories 
(Table S2), since ratings for each health metric differed in their distri-
butions (Fig. S1; Table S3). We first evaluated the impact of common 
pre-processing steps for microbiome data on the performance of SVM 
and RF classification and regression models (Fig. 1D). We evaluated the 
effects that read-depth normalization (rarefication, cumulative sum 
scaling or proportioning), sparsity filtering (filtered vs. no filtering), and 
taxonomic resolution (aggregation of sequence count data at different 

taxonomic ranks) have on model performance. The best performing 
configurations were used in subsequent analyses. 

3.1. Effects of normalization, sparsity filtering, and taxonomic resolution 
on prediction accuracy 

Read-depth normalization and aggregation by taxonomic rank had 
significant effects on the accuracy of model predictions (Fig. 2). 
Normalizing by rarefying to an even depth significantly lowered the 
accuracy of both classification and regression models (ANOVA; 
Table S4). Models trained at lower taxonomic resolution were also 
significantly less accurate (Fig. 2; Table S4). However, normalizing by 
proportioning counts by sequencing depth (i.e., proportional or cumu-
lative sum scaling) did not significantly affect model accuracy for either 
ML algorithm or feature set (Table S5). In general, models trained on 
smaller feature sets were less accurate (Fig. 3AB), corresponding with a 
loss in taxonomic information and the total numbers of features due to 
rarefying and/or sparsity filtering (see statistical interactions in 
Table S4). Model accuracy did not significantly differ among models 
using larger feature sets (unfiltered, proportioned genus or ASV). ASV- 
based models performed best, though genus-based models performed 
better than corresponding ASV-based models in a sizeable number of 
instances (~17%). For these models, regression accuracy was signifi-
cantly lower during cross-validation than in testing stages (Table S6), 
suggesting a degree of overfitting, which was not observed in classifi-
cation models. 

The efficacy and performance of the ML algorithms differed by task 
with SVM outperforming RF in classifying health categories while RF 
surpassed SVM in regression-based prediction of ratings (Fig. 2). The 
loss in accuracy at lower taxonomic resolution was more pronounced for 
SVM (ANOVA; Fcategory = 342; Frating = 122) than RF (ANOVA; Fcategory 
= 40; Frating = 41; Table S4). There were no significant differences in 
accuracy between cross-validation and testing stages (i.e., overfitting) 
between RF and SVM models. The variability in prediction accuracy was 
high for both SVM and RF due to inherent differences in the samples 
chosen (i.e., ‘split’) for training and validation (Fig. 3C). Training time 
was significantly different between algorithms, completing in an order 
of minutes for SVM versus days for RF (Fig. 3D). The computational time 
to train SVM or RF models was correlated with feature set size (Pearson’s 
r = 0.95; p < 0.001). 

3.2. Predicting measures of soil health 

The performance of microbiome-based ML models was evaluated for 
12 health metrics, as well as tillage intensity, soil texture, and soil DNA 
yield (Fig. 1B). Based on the results described above, we used micro-
biome data resolved at the ASV or genus rank and normalized by pro-
portion without sparsity filtering. SVM was exclusively used for 
classification due to its consistently better performance and lower 
computational demands relative to RF-based classification (Figs. 3D and 
2), while both algorithms were used in regression-based modeling. 

All models performed well at predicting health categories and ratings 
with the best models achieving a Kappa value of ~0.65 and a R2 value of 
~0.8, respectively (Fig. 4; full data in Fig. S2), especially for biological 
metrics. All models achieved their highest kappa or R2 value for the 
target metric or soil property used in training (Table S7). Models 
exhibited a degree of accuracy for non-targeted metrics, particularly 
among biological metrics where five models achieved an accuracy of R2 

≥ 0.4 for other non-targeted biological metrics (Table S7). Models for 
ACE protein had especially high off-target accuracy for active carbon 
(R2 = 0.66) and total health rating (R2 = 0.57). Classification-based 
models produced higher prediction accuracy for health categories (x‾ 
kappa=+0.14) than if categories were assigned post hoc from regression- 
based ML predictions (Fig. S3A). Post-hoc predictions were most reliable 
for categories in the middle of the soil health spectrum (Fig. S3B). 
Regression models predicted a narrower range of rating values than 
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observed, with SVM capturing a broader range (82%) than RF (74%; 
Table S8). There was no correlation between accuracy and observed 
range (Pearson’s r = 0.1; p = 0.59) or predicted range (Pearson’s r =
0.08; p = 0.67). 

3.3. Identifying the most predictive members of the soil microbiome 

The ASV-based features contributing most to model performance 
were identified based on the change in prediction accuracy when each 
individual ASV was excluded. The exclusion of any ASV tended to cause 
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Fig. 2. The accuracy of support vector machine (SVM) and random forest (RF) models in predicting overall health category (A) or health rating (B) differed by the 
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a greater decrease in the accuracy of classification (0.04% on average) 
than regression (0.003%). In RF-based regression models, the exclusion 
of individual ASVs caused only a slight decrease in accuracy (0.01%) for 
most ASVs examined in this way. Exclusion of some ASVs produced a 
much larger decrease in accuracy (≥0.2%), and these taxa (n = 1320; 
19% of total ASVs) were deemed ‘important features’ (Table S9). ASVs 
designated as important features were present in a greater proportion of 
samples in our collection (x‾ = 13%; max = 97%; min = 1.7%) versus all 
other ASVs (x‾ = 4.5%; max = 72%; min = 1.7%). Biological health 
metrics shared the greatest overlap in important features (21%), with 
fewer common among physical metrics (12%) and none shared among 
chemical metrics. Important features for predicting the overall health 
rating were also commonly identified as important in models for ACE 
protein and active carbon (Fig. 5A). Soil texture and organic matter 
shared many important features, as did metrics related to microbial 
biomass (DNA and respiration) and aggregate stability. The most 
important ASV-based features for predicting health rating (Fig. 5B) 
exhibited distinct trends in relative abundance corresponding with the 
overall health rating (Fig. 5C). 

3.4. Cross-study validation 

The performance of models was cross-validated using microbiome 

and soil health data from two independent studies. In the first dataset, 
CASH and microbiome data (n = 21) were collected from field soils at 
Musgrave Farm (Aurora, NY) as part of on-going research on the effects 
of tillage and cover crop use on soil health (Jernigan et al., 2020). 
Approximately 20% of ASVs in the Musgrave soil bacterial community 
were also present in our North America-wide dataset (n = 1200/6800 
ASVs). SVM and RF models were predictive of several health metrics (R2 

= 0.25–0.35), achieving the best accuracy for health rating (Fig. 6A). In 
contrast, models input with randomly permuted data had no accuracy (i. 
e., non-significant R2 values, data not shown). A small set of the 
important features identified in the initial testing data were also 
important for the prediction accuracy of Musgrave Farm health ratings 
(SVM = 18 and RF = 70 ASVs; Fig. 6B) and other metrics (Table S10). 

Next, we cross-validated models using microbiome data (n = 198) 
from a study linking mountain pastureland management practices to soil 
health (details in Table S1). This dataset contained information on soil 
pH, respiration, organic matter, potassium, penetrability, compaction, 
and yield (tons ⋅ ha− 1 ⋅ year− 1) (Lanzén et al., 2015). We expected 
microbiome-based ML models trained on related CASH metrics to pre-
dict differences in these pastureland soil properties. A large proportion 
of ASVs were common between the pastureland study and the 
continent-wide data collection (2800/6800 ASVs; 41%). Models had a 
reasonable accuracy for predicting soil pH and yield (R2 > 0.3), low 

Fig. 3. Preliminary results on model 
performance used to determine the best 
approach for preparing microbiome data 
for machine learning. In (A), feature set 
size was greatest at the highest taxo-
nomic resolution when filtering was not 
applied and when proportion-based 
normalization methods were used, as 
opposed to rarefying. In (B), models 
trained on larger feature sets produced 
higher accuracy (R2), as evident in the 
prediction of health ratings trends in 
SVM-regression. In (A) and (B), cells 
have been colored green by increasing 
value, illustrating the correspondence 
between feature set size and accuracy. In 
(C), prediction accuracy varied by up-
wards of 10% based on differences in the 
splitting of training and testing data with 
classification-based SVM and regression- 
based RF models exhibiting the greatest 
variability. In (D), the training time of RF 

and SVM algorithms differed substantively with the former taking upwards of two weeks to complete with the largest feature sets.   

Fig. 4. A ranking of the accuracy of ASV-based models for predicting health categories (A) and health ratings (B), as well as soil texture, tillage and DNA yields. 
Classification results from SVM are displayed in (A) and regression results from RF in (B). For SVM-based regression results, consult Fig. S2. Models for potassium and 
minor elements had low accuracy (not shown) and the latter were excluded from downstream analyses due to limited utility and predictive range (Table S8). 
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accuracy for predicting respiration, organic matter, and potassium 
content (R2 < 0.2), and no accuracy for predicting penetrability, 
compaction, or induced respiration (Table S11). SVM and RF models had 
a 0 and 5% false positive rate (i.e., R2 > 0 and p < 0.05) based on 
randomly permuted data, respectively. The accuracy of models fell 
within a relatively narrow range (Fig. 6C) compared to Musgrave Farm 
predictions (Fig. 6A). Accordingly, we suspected that a relatively small 
set of shared features drove variation in model performance. We iden-
tified twenty-one important ASVs present in all models predictive of 
pastureland yield (Table S12) and predictions based solely on this 
‘minimum set’ achieved a higher accuracy than when the full micro-
biome data was used (Fig. 6C). The minimum set were most important 
for predicting yield using models trained on biological metrics, with 
predictions based on models trained on health ratings exhibiting a clear 
correlation with observed yields (Fig. 6D). The total relative abundance 
of the taxa in the minimum set was correlated with yield data (Pearson’s 
r = 0.45; p < 0.001) compared to randomly sampled taxa (average r =
0.16; perm = 9999), providing evidence for the basis of model accuracy. 

3.5. Characterization of microbial diversity 

We characterized the diversity, evenness, and composition of bac-
terial communities to provide context for interpreting the performance 

of models. The soils used in our analyses were collected from farmland 
across the continental USA and Canada, representing a random set of 
samples routinely processed in soil health testing facilities. Community 
composition varied primarily due to geographical region (PERMA-
NOVA; R2 = 0.59; p < 0.001), tillage intensity (R2 = 0.026), soil texture 
(R2 = 0.011), and health category (R2 = 0.006; Fig. 7; Table S13). Soil 
microbiomes associated with higher health categories shared more 
phylogenetic similarity than soil microbiomes associated with lower 
health categories (Fig. 7C). No significant differences were observed in 
Shannon diversity (Fig. 7D) or Pielou’s evenness (not shown) among 
health categories. Among soil health classes, most variation in micro-
biome composition was explained by chemical properties (Mantel test; r 
= 0.28; p < 0.001), followed by biological properties (r = 0.16; p <
0.001), and physical properties (r = 0.09; p = 0.002). Individually, ACE 
protein, active carbon and available phosphorus ratings explained the 
greatest variation in community composition (PERMANOVA; R2 = 0.04, 
0.02 and 0.02, respectively; Table S13). 

4. Discussion 

Our study demonstrated that information derived from 16S rRNA 
gene sequencing (‘microbiome data’) can predict properties of soil 
health based on an operationally relevant sample set. ML models 

Fig. 5. Important ASVs were determined as those which caused a greater than 0.2% decrease in accuracy when excluded from test data. Important ASVs were shared 
between models of health metrics. In (A), these similarities are represented by a dendrogram with branch lengths corresponding to the Bray-Curtis dissimilarity 
distance calculated from presence/absence of important features. Leaves are colored by the class of health metric. In (B), a ranking of the top important ASVs in RF 
model-based predictions of total health rating. The lowest supported taxonomic classification (‘g_‘: genus, ‘f_‘: family, ‘o_‘: order, and ‘c_‘: class) for each ASV is 
provided along the y-axis and bars are colored by phylum. In (C), trends in the relative abundance of the three most important ASVs displayed in (B) across total 
health categories. Statistical differences were based on pairwise Kruskal-Wallis tests (p < 0.05). 
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achieved fair to good accuracy in predicting biological health metrics 
with a modest-sized training set that included diverse soils representing 
broad differences in geography, farming practice, and soil type. This 
success is all the more remarkable since the continental-scale micro-
biome data was highly variable, exhibiting 100 times more variation 
(R2

PERMANOVA) due to geographic soil origin than due to soil health 
rating. Cross-validation revealed that models trained on a continent- 
wide dataset can predict trends for individual farms at the landscape 
scale even though prediction accuracy was low. We expect that the 
development of regional scale predictive models, or cropping-system 
specific models, might be valuable for improving prediction accuracy. 
Our results showed the promise of using microbiome-ML to obtain in-
formation about a breadth of relevant soil health conditions with a 
single measurement. 

4.1. How well can the microbiome predict diverse properties of soil 
health? 

The accuracy of model predictions varied largely by the individual 
health metric. Models were predictive across the full range of soil health 
classes with at least one metric among the best predicted in each of the 
physical (available water capacity), chemical (P), and biological (ACE 
protein) classes. However, models that predicted biological metrics 
generally fared better, while those for chemical and physical metrics 
fared worse, suggesting there are differences in the predictive capacity 
of the microbiome (Fig. 4; Fig. 6AC). Microbiome data could accurately 
predict certain physical properties, like soil texture and tillage intensity, 
but these are not health metrics per se and can be easily determined in 

other ways. Yet, physical metrics like aggregate stability or hardness 
were more difficult to assess with microbiome data, at least using 16S 
rRNA gene-based approaches. Notably, models that predicted microbial 
biomass and activity (i.e., DNA yield and respiration) had a degree of 
accuracy for aggregate stability and shared many important features 
(Table S7; Fig. 5A). Aggregate stability is heavily influenced by micro-
bial biomass and activity (Lehmann et al., 2017), suggesting the possi-
bility of further refining underperforming models. 

The accuracy of microbiome-based ML for predicting most biological 
metrics illustrates that the soil microbiome can serve as a common de-
nominator for multiple health metrics. ACE protein rating was the most 
accurately predicted measure of soil health (mean R2 = 0.77). Models 
for ACE protein were also predictive of active carbon and total health 
ratings (R2 = 0.66 and 0.57, respectively) with all three metrics sharing 
many important features (i.e., the ASVs contributing most to model ac-
curacy; Fig. 5A). ACE protein is a measure of the insoluble, refractory 
proteinaceous content of soil and can be predictive of nitrogen miner-
alization rates important for plant nutrition (Geisseler et al., 2019; 
Hurisso et al., 2018). Active carbon is similarly correlated with partic-
ulate forms of soil carbon (Weil et al., 2003). The common accuracy of 
models for these metrics may reflect similar adaptations in populations 
of bacterial decomposers that access insoluble forms of organic matter 
(Wilhelm et al., 2021) and indicates that overall soil health status is 
particularly evident in the microbiome associated with the quality of soil 
organic matter. This observation is consistent with the results from a 
comprehensive survey of health metrics (Norris et al., 2020) which 
found active carbon was the best single predictor of most soil health 
metrics (Liptzin et al., 2020). The common accuracy of biological 

Fig. 6. The performance of ASV-based models was cross-validated using microbiome data from two independent studies: the Musgrave Farm study (A and B), which 
used identical measures of soil health metrics, and the Pastureland study (C and D), which used comparable soil properties (Lanzén et al., 2015). In (A), SVM and RF 
regression models were capable of predicting health ratings for Musgrave Farm soils with a significant, albeit low, degree of accuracy. The y-axis labels indicate 
which health metric was used in training the regression models. In (B), health rating was the most accurately predicted metric, yet few important features were 
shared between the test set and Musgrave farm set of either SVM or RF models. Line patterns highlight the overlap between SVM models (broad dotting) and between 
RF models (narrow dotting). In (C), SVM and RF regression models were capable of predicting pastureland yield (tons ⋅ ha− 1 ⋅ year− 1) with improved accuracy when 
using a subset of 21 important features common to all models (i.e., the ‘minimum set’). In (D), a scatter plot illustrating the relationship between predicted and 
observed pastureland yield when the minimum set was input to SVM models trained on soil health ratings. 
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models underscores that certain health metrics may be redundant and 
draws attention to the underlying basis for the accuracy of 
microbiome-ML predictions. 

4.2. What properties of the microbiome underlie model accuracy? 

We expected the microbiome to predict conventional measures of 
soil health based on the diverse and distinguishing traits of its members, 
including their varied metabolism and life-history strategies. The ma-
jority of ASVs important for model accuracy belonged to poorly char-
acterized unclassified or candidate groups, limiting our ability to 
broadly infer the underlying ecological basis of models. Yet, among 
those most important for predicting total health rating were ASVs 
classified to groups linked to soil properties relevant to soil health. For 
example, several of the most important features were classified as 
ammonia-oxidizing Nitrososphaeraceae (Kerou and Schleper, 2015), 
which were indicative of low health rating (Fig. 5C), and which might be 
indicative of soils whose fertility is heavily dependent on mineral fer-
tilizers (Dong et al., 2021; Zhalnina et al., 2013). In addition, other ASVs 
indicative of low health rating (Fig. 5C; Table S9) included those iden-
tified as Pyrinomonadaceae, a group of thermophilic Acidobacteria (Lee 
et al., 2015) found in semiarid soils having low organic matter content 
(Ivanova et al., 2020), and those identified as Massilia, a group associ-
ated with degraded agricultural soils (Zhang et al., 2020). While a full 
analysis of these relationships is beyond the scope of our study, these 
examples demonstrate the kinds of ecological information underlying 
model performance and show that an ML approach can help reveal re-
lationships between specific taxa and soil health. 

Models performed best when trained on microbiome data resolved at 
the ASV-level (Fig. 2). Yet, most ASVs (~90%) contributed minimally to 

model performance. Those that had significant impacts on model per-
formance (i.e., important features) tended to be widespread, present in 
approximately three-fold more samples, and tended to be predictive of 
multiple health metrics, with ~41% impacting the accuracy of more 
than one metric. The non-specificity of important ASVs likely reflects 
both the interrelatedness of health metrics as well as the complex 
ecology of soil microbes, which might be indicators of multiple inter-
related soil properties. An intriguing consequence of the shared pre-
dictive value of ASVs was the capability of models trained on CASH 
health metrics to predict yield information from an independent study of 
pastureland management (Fig. 6D). A relationship between CASH health 
metrics and long-term crop yields has previously been shown, with ACE 
protein and active carbon ratings the two strongest correlates (van Es 
and Karlen, 2019). Consistent with this finding, the microbiome-ML 
models predicting ACE protein and active carbon were also among the 
most accurate in predicting pastureland yield (Fig. 6C). Furthermore, 
correlations between members of the soil microbiome and crop yield 
was recently demonstrated for wheat (Yergeau et al., 2020), with several 
of the major indicator groups (Blastocatellales, Gaiella and Candidatus 
Udeaobacter) among the important features in our ML models, and in the 
original pastureland study (Lanzén et al., 2015). The existence of com-
mon microbial predictors of soil health and yield in cropland and 
pastureland systems is noteworthy given that natural grasslands are 
considered a benchmark of high soil health (Glover et al., 2010; 
Maharjan et al., 2020). We do not expect the relationships between 
microbiome, soil health and crop yield to be so simple or direct, but 
these results confirm that health metrics and the soil microbiome can 
reflect conditions where plants are more productive. 

Model accuracy did not necessarily depend on the information ob-
tained from the whole soil microbiome. During validation with 

Fig. 7. Measures of alpha- and beta-diversity revealed the extent of heterogeneity in the soil microbiome data used in training ML models. Bacterial communities (n 
= 598) exhibited a relatively low degree of clustering when ordinated by a t-SNE transformation, with bacterial communities differing primarily by geographical 
location (A) and, to a lesser extent, health rating (B). In (C), the degree of phylogenetic similarity shared between microbiomes within health categories differed 
based on Unifrac distance. Microbiomes within the ‘very high’ category shared a greater phylogenetic similarity than others while those within the ‘low’ class were, 
on average, less phylogenetically similar than other categories. In (D), the alpha-diversity of microbiomes did not significantly differ among health categories ac-
cording to the Shannon diversity index. 
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pastureland microbiome data, superior accuracy was achieved when 
models were provided with data from just 21 commonly important 
ASVs. Inputting fewer, more informative features may have helped 
reduce the impact of model overfitting to features whose association 
with soil health could vary – possibly due to differences between 
pastureland and farmland. However, models trained on larger feature 
sets had the highest accuracy with test data, where samples spanned a 
larger spatial scale (Fig. 3AB). In this case, training with a larger feature 
set may have increased the chances of capturing features important to a 
given soil type or region. Larger feature sets may provide redundancy 
needed to address variation in the occurrence/distribution of taxa. This 
redundancy was apparent in the limited overlap of ASVs identified as 
important for predicting health rating from Musgrave Farm versus our 
dataset (Fig. 6B). In our analyses, feature set size varied as a function of 
taxonomic resolution, sparsity filtering and normalization method. A 
more comprehensive account of the factors underlying the relationship 
between feature set size and accuracy remains to be determined. 

4.3. What challenges remain? 

Many of the challenges we identified in using microbiome-based ML 
to predict soil health metrics could be remedied with greater sequencing 
depth, greater taxonomic resolution, and a larger set of samples span-
ning the full range in health status. Accuracy varied greatly depending 
on the initial split of training and test set, reflecting the relatively small 
size of our collection (n = 598). The decrease in accuracy in models 
trained on rarefied data was due to a loss in total features, which could 
be avoided with greater sequencing effort. Regression models consis-
tently predicted a narrower range of values than observed, leading to 
poor accuracy at either end of the soil health spectrum. Performance will 
improve with better representation of microbiome data from soils at the 
health extremes. For example, models predicting pH rating had sur-
prisingly low accuracy (Fig. 4) given pH is a strong determinant of 
bacterial community structure (Rousk et al., 2010; Tripathi et al., 2018). 
The low accuracy was likely due to the narrow range in the pH rating of 
soils in our dataset, which were the narrowest of all metrics (Fig. S1), 
because farmland is rarely situated on soils with extreme pH. Further-
more, the fact that many soils with low health ratings failed entirely 
during sequencing exacerbates the challenge of achieving representa-
tion of microbiomes from low (n = 25) and very low (n = 0) health soils, 
which were also the most phylogenetically diverse (Fig. 7C). Once a 
broader representation of soil health status has been obtained, 
microbiome-ML would ideally use regression modeling to predict health 
ratings, which would subsequently be assigned to a health category for 
ease of interpretation by farm managers. At present, the post-hoc cate-
gorization of regression model predictions was less accurate than clas-
sification models. 

5. Conclusions 

Our study demonstrated that the information contained in a 16S 
rRNA gene-based survey of the soil microbiome can be used to predict 
soil health metrics currently used by farm managers. Our findings 
indicated that a microbiome-ML approach has high potential to sup-
plement or replace biological health metrics or to serve as an integrated 
measure of biological health given the overlap in important features 
among biological models. Predictions were generally weaker for 
chemical and physical metrics, though targeted refinements may be 
possible for important physical metrics like aggregate stability. Mean-
while, the low cost and long history of chemical soil testing makes a 
microbiome-based substitute less important. We conclude that standard 
chemical tests and a microbiome-ML approach may serve as a low-cost 
measure for soil health while providing additional information about 
soil functioning, according to our growing understanding of the 
ecological and functional traits of members of the soil microbiome. 

We are cautiously optimistic about the potential for this technology. 

We expect accuracy will improve as the number of observations in-
creases, and where models are trained on regional or management 
specific data. ML models trained on microbiome data tailored to geog-
raphy, soil type and cropping system will likely perform better, given the 
effects of plant legacy (Schmid et al., 2021) and regional differences on 
the soil microbiome (Gschwend et al., 2021). The accuracy of our 
models was remarkable given the scale and geographic variation in our 
sample collection, which was intended to capture the typical breadth of 
samples processed at a soil health testing facility. Our study also high-
lighted the need to develop high-throughput methods for collecting 
microbiome data that overcome challenges in processing low health 
soils, which tended to have low DNA yields. Our results did not indicate 
a clear preference for which ML algorithms are best suited for predicting 
soil health from microbiome data. L2-linear SVM models outperformed 
RF in several important ways, including in classification-based pre-
dictions, cross-validation and training time, while RF models out-
performed in regression-based predictions. These questions may be 
more thoroughly addressed by the adoption of microbiome and ML 
methods in the current development of soil health frameworks (Rinot 
et al., 2019; Stewart et al., 2018) and in digital agriculture (Kinoshita 
et al., 2012), either as a single measure or in combination with more 
established measures. 
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State, P., Medical, H., Topçuoğlu, B.D., Lesniak, N.A., Ruffin, M.T., Wiens, J., 
Schloss, P.D., Iv, T.R., Wiens, J., 2020. A framework for effective application of 
machine learning to microbiome-based classification problems. mBio 11, 1–13. 
https://doi.org/10.1101/816090. 

Tripathi, B.M., Stegen, J.C., Kim, M., Dong, K., Adams, J.M., Kyung, Y., Adams, J.M., 
2018. Soil pH mediates the balance between stochastic and deterministic assembly 
of bacteria. The ISME Journal 1072–1083. https://doi.org/10.1038/s41396-018- 
0082-4. 

Trognitz, F., Hackl, E., Widhalm, S., Sessitsch, A., 2016. The role of plant-microbiome 
interactions in weed establishment and control. FEMS Microbiology Ecology 92, 
1–15. https://doi.org/10.1093/femsec/fiw138. 

Tzeneva, V.A., Salles, J.F., Naumova, N., de Vos, W.M., Kuikman, P.J., Dolfing, J., 
Smidt, H., 2009. Effect of soil sample preservation, compared to the effect of other 
environmental variables, on bacterial and eukaryotic diversity. Research in 
Microbiology 160, 89–98. https://doi.org/10.1016/j.resmic.2008.12.001. 

van der Maaten, L., Hinton, G., 2008. Visualizing data using t-SNE. Journal of Machine 
Learning Research 9, 2579–2605. 

van Es, H.M., Karlen, D.L., 2019. Reanalysis validates soil health indicator sensitivity and 
correlation with long-term crop yields. Soil Science Society of America Journal 83, 
721–732. https://doi.org/10.2136/sssaj2018.09.0338. 

Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B., Samson-Liebig, S.E., 2003. Estimating 
active carbon for soil quality assessment: a simplified method for laboratory and 
field use. American Journal of Alternative Agriculture 18, 3–17. https://doi.org/ 
10.1079/AJAA2003003. 

Werner, J.J., Knights, D., Garcia, M.L., Scalfone, N.B., Smith, S., Yarasheski, K., 
Cummings, T.A., Beers, A.R., Knight, R., Angenent, L.T., 2011. Bacterial community 
structures are unique and resilient in full-scale bioenergy systems. Proceedings of the 
National Academy of Sciences 108, 4158–4163. https://doi.org/10.1073/ 
pnas.1015676108. 
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